Quantum Phase Transition of Correlated Iron-Based Superconductivity in LiFe1−xCoxAs
نویسندگان
چکیده
منابع مشابه
Quantum Mott Transition and Superconductivity
The gas-liquid transition is a first-order transition terminating at a finite-temperature critical point with diverging density fluctuations. Mott transition, a metal-insulator transition driven by Coulomb repulsion between electrons, has been identified with this textbook transition. However, the critical temperature of the Mott transition can be suppressed, resulting in unusual quantum critic...
متن کاملWeak-coupling superconductivity in a strongly correlated iron pnictide
Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in th...
متن کاملExperimental aspects of Alpha, Beta angles distortion on superconductivity in 1111-type Iron-based superconductor
In this research, we aim to clarify the relationship between the structural distortion due to doping and the superconductivity existence in the FeAs4 structure. For this, we have prepared polycrystalline of NdFeAsO0.8F0.2, NdFeAs0.95Sb0.05O0.8F0.2 and Nd0.99Ca0.01FeAsO0.8F0.2 samples by one-step solid state reaction method. The structural and electrical properties of the samples were characteri...
متن کاملSuperconductivity near phase separation in models of correlated electrons.
Numerical and analytical studies of several models of correlated electrons are discussed. Based on exact diagonalization and variational Monte Carlo techniques , we have found strong indications that the two dimensional t − J model supercon-ducts near phase separation in the regime of quarter-filling density, in agreement with previous results reported by Dagotto and Riera (Phys. Rev. Letters 7...
متن کاملResilient quantum computation in correlated environments: a quantum phase transition perspective.
We analyze the problem of a quantum computer in a correlated environment protected from decoherence by quantum error correction using a perturbative renormalization group approach. The scaling equation obtained reflects the competition between the dimension of the computer and the scaling dimension of the correlations. For an irrelevant flow, the error probability is reduced to a stochastic for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2019
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.123.217004